If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-7x-99=0
a = 2; b = -7; c = -99;
Δ = b2-4ac
Δ = -72-4·2·(-99)
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-29}{2*2}=\frac{-22}{4} =-5+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+29}{2*2}=\frac{36}{4} =9 $
| 35+55+e=180 | | -3(4k+5)=-99 | | x-16=305 | | 3(n+5)+7=25 | | 3x-7x=2 | | x-3/5-7/30=0 | | 6k-28/4=-4 | | .02x+.07x=1700 | | -1-8b=-137 | | -(-3y-5)-4y+2)=3 | | 6k-1=-19 | | 5x+30-2x=3x+30 | | 19−4t=7 | | 3-5x/4=-x | | x-3/5=7/0 | | 7-6y=-5-8y | | x-3/5=7/30 | | -18m=-2-5(m-2) | | 3m−1=2 | | m-11=-4 | | 2q−q−q+q=5 | | 2=6−2r | | Y=-1.179(x^2-12x+36)+42 | | 4x6=34 | | 16d-10d=18 | | Y-2=3x+21 | | Y=-0.5(x^2-12x+36)+18 | | 19w-16w=6 | | 2v+8v=10 | | 19=5+2(a+4) | | Y+6=2x+10 | | 7y+24=11y+48 |